A Framework of Learning Through Empirical Gain Maximization
نویسندگان
چکیده
We develop in this letter a framework of empirical gain maximization (EGM) to address the robust regression problem where heavy-tailed noise or outliers may be present response variable. The idea EGM is approximate density function distribution instead approximating truth directly as usual. Unlike classical maximum likelihood estimation that encourages equal importance all observations and could problematic presence abnormal observations, schemes can interpreted from minimum distance viewpoint allow ignorance those observations. Furthermore, we show several well-known nonconvex paradigms, such Tukey truncated least square regression, reformulated into new framework. then learning theory for by means which unified analysis conducted these well-established but not fully understood approaches. This leads novel interpretation existing bounded loss functions. Within framework, two seemingly irrelevant terminologies, Tukey's biweight triweight kernel nonparametric smoothing, are closely related. More precisely, derived kernel. Other frequently employed functions machine learning, loss, Geman-McClure exponential squared also certain smoothing kernels statistics. In addition, enables us devise learning.
منابع مشابه
the effect of vocabulary instruction through semantic mapping on learning and recall of efl learners
چکیده ندارد.
15 صفحه اولnetwork of phonological rules in lori dialect of andimeshk: a study within the framework of post-generative approach.
پژوهش حاضر ارائه ی توصیفی است از نظام آوایی گویش لری شهر اندیمشک، واقع در شمال غربی استان خوزستان. چهارچوب نظری این پژوهش، انگاره ی پسازایشی جزءمستقل می باشد. این پایان نامه شامل موارد زیر است: -توصیف آواهای این گویش به صورت آواشناسی سنتی و در قالب مختصه های زایشی ممیز، همراه با آوانوشته ی تفصیلی؛ -توصیف نظام آوایی گویش لری و قواعد واجی آن در چهارچوب انگاره ی پسازایشی جزءمستقل و معرفی برهم کن...
Entanglement and Differentiable Information Gain Maximization
Decision forests can be thought of as a flexible optimization toolbox with many avenues to alter or recombine the underlying architectural components and improve recognition accuracy and efficiency. In this chapter, we present two fundamental approaches for re-architecting decision forests that yield higher prediction accuracy and shortened decision time. The first is entanglement, i.e. using t...
متن کاملAdaptive contrast gain control and information maximization
Contrast gain control is an important mechanism underlying the visual system’s adaptation to contrast of luminance in varying visual environments. Our previous work showed that the threshold and saturation determine the preferred contrast sensitivity as well as the maximum information coding capacity of the neuronal model. In this report, we investigated the design principles underlying adaptat...
متن کاملEfficient Conservation in a Utility-Maximization Framework
Systematic planning for biodiversity conservation is being conducted at scales ranging from global to national to regional. The prevailing planning paradigm is to identify the minimum land allocations needed to reach specified conservation targets or maximize the amount of conservation accomplished under an area or budget constraint. We propose a more general formulation for setting conservatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2021
ISSN: ['0899-7667', '1530-888X']
DOI: https://doi.org/10.1162/neco_a_01384